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This work focuses on combining observations from field experiments with detailed computer simulations of

a physical process to carry out statistical inference. Of particular interest here is determining uncertainty

in resulting predictions. This typically involves calibration of parameters in the computer simulator as well

as accounting for inadequate physics in the simulator. We consider applications in characterizing material

properties for which the field data and the simulator output are highly multivariate. For example, the

experimental data and simulation output may be an image or may describe the shape of a physical object.

We make use of the basic framework of Kennedy and O’Hagan (2001). However, the size and multivariate

nature of the data lead to computational challenges in implementing the framework. To overcome these

challenges, we make use of basis representations (e.g. principal components) to reduce the dimensionality

of the problem and speed up the computations required for exploring the posterior distribution. This

methodology is applied to applications, both ongoing and historical, at Los Alamos National Laboratory.

Keywords: computer experiments; predictability; uncertainty quantification; Gaussian process; predictive

science; functional data analysis

1 Introduction

Understanding and predicting the behavior of complex physical processes is crucial in a variety

of applications that include weather forecasting, oil reservoir management, hydrology, and impact

dynamics. Investigations of such systems often make use of computer code–a simulator–which

simulates the physical process of interest along with field data collected from experiments or obser-

vations of the actual physical system. The simulators we work with at Los Alamos National Labora-

tory (LANL) typically model fairly well-understood physical processes–this can be contrasted with

agent-based simulations, which model social activity. Even so, uncertainties play an important role
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in using the code to predict behavior of the physical system. Uncertainties arise from a variety of

sources that include: uncertainty in the specification of initial conditions; uncertainty in the value

of important physical constants (e.g. melting temperatures, equations of state, stress-strain rates);

inadequate mathematical models in the code to describe physical behavior; and inadequacies in the

numerical algorithms used for solving the specified mathematical systems (e.g. unresolved grids).

The features above clearly distinguish the simulation code from the actual physical system of

interest. However much of this uncertainty can be mitigated by utilizing experimental observations

to constrain uncertainties within the simulator. When the simulation code is sufficiently fast, esti-

mation approaches based on Monte Carlo can be used. Examples include the Bayesain analysis of

inverse problems via Markov chain Monte Carlo (MCMC) (Higdon et al., 2003; Kaipio and Som-

ersalo, 2004) or importance sampling (Berliner, 2001; Hegstad and Omre 2001). Such approaches

offer the bennefit of readily accommodating very large parameter spaces in the estimation process.

A limitation of these approaches is their reliance on the availability of a very fast simulation code.

In some cases, the actual simulation code can be replaced by a local linear approximation so that

MCMC may be employed; see Hanson and Cunningham (1999), Kaipio et al.(2000) or Nakhleh et

al.(2005) for examples.

In applications such as weather forecasting where both the data and simulations arrive in a

sequential fashion, filtering approaches can also be quite useful (Bengtsson et al., 2003; Kao et al.,

2004). The sequential nature of such applications means that complex simulations need only be

run over short-time intervals. Because of this, simulations are then more easily manipulated to

better match the data as it arrives via Bayesian updating or other data assimilation techniques.

When the application is not readily amenable to sequential updating and the simulation code

takes minutes–or even days–to complete, alternative estimation approaches are required. This is

the case for our applications. In this paper we use the approach described in Kennedy and O’Hagan

(2001) which utilizes the Gaussian process (GP) models described in Sacks et al.(1989) to model

the simulator output at untried input settings. This model for the simulator is then embedded in a

larger framework so that parameter estimation (i.e. calibration) and prediction can be carried out.

The method described in Kennedy and O’Hagan (2001) is appropriate when a single, univariate

output is required from the simulator. In the applications we are currently involved in, the response

of interest is often highly multivariate. Examples may include a one-dimensional displacement

trace over time, or a time-sequence of two-dimensional images. To facilitate the description of our

methodology, we utilize an application from the beginnings of the Manhattan project at LANL

(Neddermeyer, 1943) in which steel cylinders were imploded by a high explosive (HE) charge
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surrounding the cylinder. Figure 1 shows the results of such experiments. To describe these

Figure 1: Cylinders before and after implosion using TNT. Photos are from Neddermeyer (1943)

experiments 2 and 10.

implosions, Neddermeyer devised a rudimentary physical model to simulate an experiment which

depends on three inputs:� x1: the mass ratio between the HE and steel;� θ1: detonation energy per unit mass of HE;� θ2: yield stress of steel.

The first input x1 is a condition under the control of the experimenter; the remaining two inputs

θ = (θ1, θ2) are parameters that are to be estimated from the experimental data. More generally in

the framework, we describe simulation inputs with the joint parameter (x, θ) where the px-vector

x denotes controllable–or at least observable–input conditions of the experiment, and the pθ-vector

θ holds parameters to be calibrated, or estimated. Hence, a given simulation is controlled by a

(px + pθ)-vector (x, θ), which contains the input settings. In this cylinder example we have px = 1

and pθ = 2.

Output from Neddermeyer’s simulation model for a particular input setting (x∗, θ∗) is shown

in Fig. 2. While this particular simulation code runs very quickly, we mean it to be a placeholder
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for a more complicated, and computationally demanding, code from which a limited number of

simmulations (typically less than 200) will be available for the eventual analysis.
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Figure 2: Evolution of the implosion of the steel cylinder using Neddermeyer’s simulation model.

The data from this application come in the form of a sequence of high-speed photographs

taken during the implosion, which takes place over a span of about 30 microseconds. The original

photographs from the experiments were unavailable so we construct synthetic data using the rudi-

mentary simulation model at assumed values for the calibration parameters θ. We generated data

from three experiments, each with different values for x1, the relative mass of HE to steel. The

experimental data are shown in Fig. 3. As is typical of experiments we are involved in, the amount

and condition of the observed data varies with experiment. Here the number of photographs and

their timing varies with experiment. We take a trace of the inner radius of the cylinder to be the

response of interest. The trace, described by angle φ and radius r, consists of 12 points equally

spaced by angle.

We choose this example as the context to explain our approach because it possesses the features

of the applications we are interested in, while still remaining quite simple. Specifically, we point

the reader to the following properties of this example:� The application involves a simulator from which only a limited number of simulations m

(m < 200) may be carried out. Simulator output depends on a vector of input values (x, θ)

where the px-vector x denotes the input specifications and the pθ-vector θ holds parameters

to be calibrated.� The dimensionality of the input vector (x, θ) is limited. Here it is a three-dimensional vector

(px + pθ = 1+2 = 3); in the application of Sec. 3 pθ = 8. We’ve worked with applications for

which the dimension of (x, θ) is as large as 25. However applications with high-dimensional
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Figure 3: Hypothetical data obtained from photos at different times during the 3 experimental

implosions. All cylinders initially had a 1.5 in outer and a 1.0 in inner radius.

(pθ > 100) inputs, as is the case in inverse problems and tomography applications, are beyond

the scope of the approach given here.� Observations from one or more experiments are available to constrain the uncertainty regard-

ing the calibration parameters θ. In most applications we’ve worked with, the number of

experiments n is small (n < 10). The experimental data are typically collected at various

input conditions x, and the simulator produces output that is directly comparable to these

field observations. Note that the simulator can also model the observation process used in

the experiment to ensure that the simulations are compatable with the experimental data.

The goal of the analysis described in the next section is to:� use the experimental data to constrain the uncertainty regarding the calibration parameters;
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� make predictions (with uncertainty) at new input conditions x; and� estimate systematic discrepancies between the simulator and physical reality.

We develop our methodology in the context of Neddermeyer’s implosion application. However, the

methodology generalizes to other applications in an obvious manner. Where generalizations are

less obvious, we do our best to point this out. After describing the model formulation and posterior

exploration via MCMC, we then illustrate this approach on an application in material science. The

paper then concludes with a discussion.

2 Model Formulation

2.1 Design of simulator runs

A sequence of simulation runs is carried out at m input settings varying over predefined ranges for

each of the input variables:











x∗
1 θ∗1
...

...

x∗
m θ∗m











=











x∗
11 · · · x∗

1px
θ∗11 · · · θ∗1pθ

...
. . .

...
...

. . .
...

x∗
m1 · · · x∗

mpx
θ∗m1 · · · θ∗mpθ











. (1)

We would like to use this collection of simulation runs to screen inputs as well as to build simulator

predictions at untried input settings using a Gaussian process model.

We typically use an orthogonal array (OA)-based Latin hypercube (LH) design (Tang, 1993) for

the simulation runs for the applications we deal with. Such designs ensure space filling properties

in higher dimensional margins, while maintaining the benefits of the LH design. We standardize

the inputs to range over [0, 1]px+pθ to facilitate the design and prior specification (described later).

Specifically, for the cylinder application, we use a strength 2, OA-based LH design for the simulation

runs. The OA design is over px + pθ = 1+2 = 3 factors, with each factor having four levels equally

spaced between 0 and 1: 1
8 , 3

8 , 5
8 , 7

8 . This m = 36 point design is shown in Fig. 4, along with the

resulting OA-based LH design. We have found that in practice, this design of simulation runs is

often built up sequentially.

For the cylinder application, the output from the resulting simulator runs is shown in Fig. 5.

The simulator gives the radius of the inner shell of the cylinder over a fixed grid of times and

angle. Surfaces from the left-hand frame are the output of three different simulations. Due to the

symmetry assumptions in the simulator, the simulated inner radius only changes with time t–not
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Figure 4: Lower triangle of plots: 2-dimensional projections of a m = 36 point, 4-level, OA design. Upper

triangle of plots: An OA-based LH design obtained by spreading out the 4 level OA design so that each

1-dimensional projection gives an equally spaced set of points along [0,1].

angle φ. However, since the experimental data give radius values that vary by angle at fixed sets

of times (Fig. 3), we treat the simulator output as an image of radii over time t and angle φ. All

m = 36 simulations are shown in the right frame of Fig. 5 as a function of time only. It is worth

noting that the simulations always give the output on this fixed grid over time and angle. This is

in contrast to the comparatively irregular collection of experimental data that varies substantially

as to its amount as well as which angles and times the radius is measured.
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Figure 5: Simulated implosions using input settings from the OA-based LH design. Simulation

output gives radius by time (t) and angle φ as shown in the left-hand figure. The radius by time

trajectories are shown for all m = 36 simulations in the right-hand figure.
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2.2 Modeling simulator output

Our analysis requires we develop a probability model to describe the simulator output at untried

settings (x, θ). To do this, we use the simulator outputs to construct a GP model that “emulates”

the simulator at arbitrary input settings over the (standardized) design space [0, 1]px+pθ . To con-

struct this emulator, we model the simulation output using a pη-dimensional basis representation:

η(x, θ) =

pη
∑

i=1

kiwi(x, θ) + ǫ, (x, θ) ∈ [0, 1]px+pθ , (2)

where {k1, . . . , kpη} is a collection of orthogonal, nη-dimensional basis vectors, the wi(x, θ)’s are

GPs over the input space, and ǫ is a nη-dimensional error term. This type of formulation reduces the

problem of building an emulator that maps [0, 1]px+pθ to Rnη to building pη independent, univariate

GP models for each wi(x, θ). The details of this model specification are given below.

Output from each of the m simulation runs prescribed by the design results in nη-dimensional

vectors, which we denote by η1, . . . , ηm. Since the simulations rarely give incomplete output,

the simulation output can often be efficiently represented via principal components (Ramsay and

Silverman, 1997). We first standardize the simulations by centering the raw simulation output

vectors about the mean of these vectors: 1
m

∑m
j=1 ηj . We then scale the output by a single value

so that its variance is 1. This standardization simplifies some of the prior specifications in our

models. We also note that, depending on the application, some alternative standardization may be

preferred. Whatever the choice of the standardization, the same standardization is also applied to

the experimental data.

We define Ξ to be the nη × m matrix obtained by column-binding the (standardized) output

vectors from the simulations

Ξ = [η1; · · · ; ηm].

Typically, the size of a given simulation output nη is much larger than the number of simulations

carried out m. We apply the singular value decomposition (SVD) to the simulation output matrix

Ξ giving

Ξ = UDV T ,

where U is a nη ×m matrix having orthogonal columns, D is a diagonal m×m matrix holding the

singular values, and V is a m×m orthonormal matrix. To construct a pη-dimensional representation

of the simulation output, we define the principal component (PC) basis matrix Kη to be the first

pη columns of [ 1√
m

UD]. The resulting principal component loadings or weights is then given by

[
√

mV ], whose columns have mean 0 and variance 1.
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For the cylinder example we take pη = 3 so that Kη = [k1; k2; k3]; the basis functions k1, k2 and

k3 are shown in Fig. 6. Note that the ki’s do not change with φ due to the angular invariance of
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Figure 6: Principal component bases derrived from the simulation output.

Neddermeyer’s simulation model.

We use the basis representation of Eq. (2) to model the nη-dimensional simulator output over

the input space. Each PC weight wi(x, θ), i = 1, . . . , pη, is then modeled as a mean 0 GP

wi(x, θ) ∼ GP(0, λ−1
wi R((x, θ), (x′, θ′); ρwi)),

where λwi is the marginal precision of the ith process and the correlation function is given by

R((x, θ), (x′, θ′); ρwi) =

px
∏

k=1

ρ
4(xk−x′

k)2

wik ×
pθ
∏

k=1

ρ
4(θk−θ′k)2

wi(k+px) . (3)

This is the Gaussian covariance function, which gives very smooth realizations, and has been used

previously by Sacks et al.(1989) and Kennedy and O’Hagan (2001) to model computer simulation

output. An advantage of this product form is that only a single additional parameter is required per

additional input dimension, while the fitted GP response still allows for rather general interactions

between inputs. We use this Gaussian form for covariance function because the simulators we

work with tend to respond very smoothly to changes in the inputs. Depending on the nature

of the sensitivity of simulation output to input changes, one may wish to alter this covariance

specification to allow for rougher realizations. The parameter ρwik controls the spatial range for the

kth input dimension of the process wi(x, θ). Under this parameterization, ρwik gives the correlation

between wi(x, θ) and wi(x
′, θ′) when the input conditions (x, θ) and (x′, θ′) are identical, except for a

difference of 0.5 in input dimension k. Note that this interpretation makes use of the standardization

of the input space to [0, 1]px+pθ .

Restricting to the m input design settings given in Eq. (1), we define the m-vector wi to be the
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restriction of the process wi(·, ·) to the input design settings

wi = (wi(x
∗
1, θ

∗
1), . . . , wi(x

∗
m, θ∗m))T , i = 1, . . . , pη.

In addition we define R((x∗, θ∗); ρwi) to be the m×m correlation matrix resulting from applying (3)

to each pair of input settings in the design. The (px + pθ)-vector ρwi gives the correlation distances

for each of the input dimensions.

At the m simulation input settings, the mpη-vector w = (wT
1 , . . . , wT

pη
)T then has prior disribu-

tion

w =











w1

...

wpη











∼ N





















0
...

0











,











λ−1
w1R((x∗, θ∗); ρw1) 0 0

0
. . . 0

0 0 λ−1
wpη

R((x∗, θ∗); ρwpη)





















, (4)

which is controlled by pη precision parameters held in λw and pη · (px + pθ) spatial correlation pa-

rameters held in ρw. The centering of the simulation output makes the zero mean prior appropriate.

The prior above can be written more compactly as

w ∼ N(0, Σw),

where Σw, controlled by parameter vectors λw and ρw, is given in (4).

We specify independent Γ(aw, bw) priors for each λwi and independent beta(aρw , bρw) priors for

the ρwik’s.

π(λwi) ∝ λaw−1
wi e−bwλwi , i = 1, . . . , pη,

π(ρwik) ∝ ρ
aρw−1
wik (1 − ρwik)

bρw−1, i = 1, . . . , pη, k = 1, . . . , px + pθ.

We expect the marginal variance for each wi(·, ·) process to be close to one due to the standardization

of the simulator output. For this reason we specify that aw = bw = 5. In addition, this informative

prior helps stabilize the resulting posterior distribution for the correlation parameters which can

trade off with the marginal precision parameter (Kern (2000)).

Because we expect only a subset of the inputs to influence the simulator response, our prior for

the correlation parameters reflects this expectation of “effect sparsity.” Under the parameterization

in (3), input k is inactive for PC i if ρwik = 1. Choosing aρw = 1 and 0 < bρw < 1 will give a

density with substantial prior mass near 1. For the cylinder example we take bρw = 0.1, which

makes Pr(ρwik < 0.98) ≈ 1
3 a priori. In general, the selection of these hyperparameters should

depend on how many of the px + pθ inputs are expected to be active.
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If we take the error vector in the basis representation of (2) to be i.i.d. normal, we can then

develop the sampling model, or likelihood, for the simulator output. We define the mnη-vector η

to be the concatenation of all m simulation output vectors

η = vec(Ξ) = vec([η(x∗
1, θ

∗
1); · · · ; η(x∗

m, θ∗m)]).

Given precision λη of the errors the likelihood is then

L(η|w, λη) ∝ λ
mnη

2
η exp

{

− 1

2
λη(η − Kw)T (η − Kw)

}

,

where the mnη × mpη matrix K is given by

K = [Im ⊗ k1; · · · ; Im ⊗ kpη ],

and the ki’s are the pη basis vectors previously computed via SVD. A Γ(aη, bη) is specified for the

error precision λη.

Since the likelihood factors as shown below

L(η|w, λη) ∝ λ
mpη

2
η exp

{

− 1

2
λη(w − ŵ)T (KT K)(w − ŵ)

}

×

λ
m(nη−pη)

2
η exp

{

− 1

2
ληη

T (I − K(KT K)−1KT )η
}

,

the formulation can be equivalently represented with a dimension reduced likelihood and a modified

Γ(a′η, b
′
η) prior for λη:

L(ŵ|w, λη) ∝ λ
mpη

2
η exp

{

− 1

2
λη(ŵ − w)T (KT K)(ŵ − w)

}

,

where

a′η = aη +
m(nη − pη)

2
,

b′η = bη + 1

2
ηT (I − K(KT K)−1KT )η, and

ŵ = (KT K)−1KT η. (5)

Thus the normal-gamma model

η|w, λη ∼ N(Kw, λ−1
η Imnη), λη ∼ Γ(aη, bη)

is equivalent to the reduced form

ŵ|w, λη ∼ N(w, (ληK
T K)−1), λη ∼ Γ(a′η, b

′
η)
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since

L(η|w, λη) × π(λη; aη, bη) ∝ L(ŵ|w, λη) × π(λη; a
′
η, b

′
η). (6)

The likelihood depends on the simulations only through the computed PC weights ŵ. After

integrating out w, the posterior distribution becomes

π(λη, λw, ρw|η) ∝
∣

∣(ληK
T K)−1 + Σw

∣

∣

− 1
2 exp{− 1

2
ŵT ([ληK

T K]−1 + Σw)−1ŵ} × (7)

λ
a′

η−1
η e−b′ηλη ×

pη
∏

i=1

λaw−1
wi e−bwλwi ×

pη
∏

i=1







px
∏

j=1

(1 − ρwij)
bρ−1

pθ
∏

j=1

(1 − ρwi(j+px))
bρ−1







.

This posterior distribution is a milepost on the way to the complete formulation, which also incor-

porates experimental data. However, it is worth considering this intermediate posterior distribution

for the simulator response. It can be explored via MCMC using standard Metropolis updates and

we can view a number of posterior quantities to illuminate features of the simulator. Oakley and

O’Hagan (2004) use the posterior of the simulator response to investigate formal sensitivity mea-

sures of a univariate simulator; Sacks et al., (1989) do this from a non-Bayesian perspective. For

example, Fig. 7 shows boxplots of the posterior distributions for the components of ρw. From this

figure it is apparent that PC 1 is most influenced by x1–the relative amount of HE used in the

experiment.

Given the posterior realizations from (7), one can generate realizations from the process η(x, θ)

at any input setting (x⋆, θ⋆). Since

η(x⋆, θ⋆) =

pη
∑

i=1

kiwi(x
⋆, θ⋆),

realizations from the wi(x
⋆, θ⋆) processes need to be drawn given the MCMC output. For a given

draw (λη, λw, ρw) a draw of w⋆ = (w1(x
⋆, θ⋆), . . . , wpη(x⋆, θ⋆))T can be produced by making use of

the fact




ŵ

w⋆



 ∼ N









0

0



 ,









(ληK
T K)−1 0

0 0



 + Σw,w⋆(λw, ρw)







 ,

where Σw,w⋆ is obtained by applying the prior covariance rule to the augmented input settings

that include the original design and the new input setting (x⋆, θ⋆). Recall ŵ is defined in (5).

Application of the conditional normal rules then gives

w⋆|ŵ ∼ N(V21V
−1
11 ŵ, V22 − V21V

−1
11 V12),
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Figure 7: Boxplots of posterior samples for each ρwik for the cylinder application.

where

V =





V11 V12

V21 V22



 =









(ληK
T K)−1 0

0 0



 + Σw,w⋆(λw, ρw)





is a function of the parameters produced by the MCMC output. Hence, for each posterior realization

of (λη, λw, ρw), a realization of w⋆ can be produced. The above recipe easily generalizes to give

predictions over many input settings at once.

Figure 8 shows posterior means for the simulator response η where each of the three inputs were

varied over their prior range of [0, 1] while the other two inputs were held at their nominal setting

of 0.5. The posterior mean response surfaces convey an idea of how the different parameters affect

the highly multivariate simulation output. Other marginal functionals of the simulation response

can also be calculated such as sensitivity indicies or estimates of the Sobol decomposition (Sacks

et al., 1989; Oakley and O’Hagan, 2004).
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Figure 8: Posterior mean simulator predictions (radius as a function of time) varying 1 input, hold-

ing others at their nominal values of 0.5. Left-hand column shows predictions on the standardized

scale; right-hand column shows the predictions on the original scale.
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2.3 General model

The model for the simulator response is one component of the complete model formulation, which

uses experimental data to calibrate the parameter vector θ as well as account for inadequacies in

the simulator. We closely follow the formulation of Kennedy and O’Hagan (2001). Here a vector

of experimental observations y(x) taken at input condition x is modeled as

y(x) = η(x, θ) + δ(x) + ǫ,

where η(x, θ) is the simulated output at the true parameter setting θ, δ(x) accounts for discrepancy

between the simulator and physical reality, and ǫ models observation error. For discussion and

motivation regarding this particular decomposition see Kennedy and O’Hagan (2001) and accom-

panying discussion.

2.4 Discrepancy model

Previously, Sec. 2.2 gave a detailed explanation of our GP model for η(x, θ). In this section

we define the discrepancy model which, like the model for η(x, θ), is constructed using a basis

representation, placing GP models on the basis weights. It differs in that the basis weights depend

only on input condition x and that the basis specification for δ(x) is typically nonorthogonal and

tailored to the application at hand.

For this example consisting of imploding of steel cylinders, δ(x) adjusts the simulated radius

over the time × angle grid. This discrepancy between actual and simulated radius is constructed

as a linear combination of pδ = 24 basis functions that are defined over the nη = 20 × 26 grid over

time t and angle φ. Thus

δ(x) =

pδ
∑

k=1

dk(t, φ)vk(x) =

pδ
∑

k=1

dkvk(x), (8)

where the basis functions dk, k = 1, . . . , pδ, are shown in Fig. 9, and independent GP priors over

x are specified for each weight vk(x).

The basis functions are specified according to what is known about the actual physical process

and potential deficiencies in the simulator. Here the basis functions are separable normal kernels

that are long in the t direction and narrow and periodic in the φ direction. This conforms to our

expectation that discrepancies–if they exist–should have a strong time persistence, with a much

weaker angular persistence.
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tim
e

angle φ

Figure 9: Basis kernels dk, k = 1, . . . , pδ. Each kernel is a nη = 20 × 26 image over time (y-axis)

and angle (x-axis). Note that the basis elements are periodic over angle φ.

We specify independent mean 0 GP priors for each basis weight vk(x). Thus the pδ-variate

process v(x) = (v1(x), . . . , vpδ
(x))T is a mean 0 GP with covariance rule given by

Cov(v(x), v(x′)) = λ−1
v Ipδ

⊗ R(x, x′; ρv),

where λv is the common marginal precision of each vk(x), ρv is a px-vector controlling the correlation

strength along each component of x, and R(x, x′; ρv) is a stationary Gaussian product correlation

model given by

R(x, x′; ρv) =

px
∏

k=1

ρ
4(xk−x′

k)2

vk . (9)

Note that the Gaussian form of the correlation will enforce a high degree of smoothness for each

process vk(x) as a function of x. We feel this is plausible in this application since we expect

any discrepancies to change smoothly with input condition x. Other applications may require an

alternate specification.

As with the GP model for the simulator η(x, θ), we complete the discrepancy model formulation

by specifying a gamma prior for the precision λv and independent beta priors for the components

of ρv,

π(λv) ∝ λav−1
v e−bvλv

π(ρvk) ∝ ρ
aρv−1
vk (1 − ρvk)

bρv−1, k = 1, . . . , pδ,

where av = 1, bv = 0.0001, aρv = 1, and bρv = 0.1. This results in a rather uninformative prior for

the precision λv. If the data are uninformative about this parameter, it will tend to stay at large
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values that are consistent with a very small discrepancy. Like the prior for ρw, we take aρv = 1 and

bρv = 0.1 to encourage effect sparsity.

2.5 Full model specification; priors and smoothness

Given the model specifications for the simulator η(x, θ) and the discrepancy δ(x), we can now con-

sider the sampling model for the experimentally observed data. We assume the data y(x1), . . . , y(xn)

are collected for n experiments at input conditions x1, . . . , xn. For the implosion example, there

are n = 3 experiments whose data are shown in Fig. 3. Each y(xi) is a collection of nyi
measure-

ments over points indexed by time and angle configurations (ti1, φi1), . . . , (tinyi
, φinyi

). The data

for experiment i is modeled as the sum of the simulator output at the true parameter setting θ and

the discrepancy

y(xi) = η(xi, θ) + δ(xi) + ei,

where the observation error vector ei is modeled as N
(

0, (λyWi)
−1

)

. Using the basis representations

for the simulator and the discrepancies, this becomes

y(xi) = Kiw(xi, θ) + Div(xi) + ei.

Because the time × angle support of each y(xi) varies with experiment and isn’t necessarily con-

tained in the support of the simulation output, the basis vectors in Ki may have to be interpolated

over time and angle from Kη. Since the simulation output over time and angle is quite dense, this

interpolation is straightforward. The discrepancy basis matrix Di is determined by the functional

form given in (8)–the jk element of Di is given by

Dijk = dk(tij , φij).

The sampling model for the observations in experiment i is nyi
-variate normal

y(xi)|w(xi, θ), v(xi), λy ∼ N



[Di; Ki]





v(xi)

w(xi, θ)



 , (λyWi)
−1



 .

Taking all of the experiments together, the sampling model is ny variate normal, where ny =

ny1 +· · ·+nyn , is the total number of experimental data points. We define y to be the ny-vector from

concatenation of the y(xi)’s, v = vec([v(x1); · · · ; v(xn)]T ) and u(θ) = vec([w(x1, θ); · · · ; w(xn, θ)]T ).

The sampling model for the entire experimental dataset, along with the prior for the observation
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precision λy, can be written as

y|v, u(θ), λy ∼ N



B





v

u(θ)



 , (λyWy)
−1



 , λy ∼ Γ(ay, by), (10)

where Wy = diag(W1, . . . , Wn),

B = [diag(D1, . . . , Dn); diag(K1, . . . , Kn)]





P T
D 0

0 P T
K



 ,

and PD and PK are permutation matricies whose rows are given by

PD(j + n(i − 1); ·) = eT
(j−1)pδ+i, i = 1, . . . , pδ; j = 1, . . . , n

PK(j + n(i − 1); ·) = eT
(j−1)pη+i, i = 1, . . . , pη; j = 1, . . . , n.

Note that permutations are required for specifying B since the basis weight components v and u(θ)

are separated in (10). The observation precision Wy is often fairly well-known in practice. Hence we

use an informative prior for λy that encourages its value to be near one. In the implosion example

we set ay = by = 5.

Equivalently (10) can be represented using the normal-gamma form




v̂

û





∣

∣

∣

∣

∣

∣





v

u(θ)



 , λy ∼ N









v

u(θ)



 , (λyB
T WyB)−1



 , λy ∼ Γ(a′y, b
′
y),

with

ny = ny1 + · · · + nyn , denoting the total number of experimental data points,




v̂

û



 = (BT WyB)−1BT Wyy,

a′y = ay + 1

2
[ny − n(pδ + pη)], and

b′y = by +
1

2









y − B





v̂

û









T

Wy



y − B





v̂

û














.

This equivalency follows from (6) given in Sec. 2.2.

The (marginal) distribution for the combined, reduced data obtained from the experiments and

simulations given the covariance parameters has the form








v̂

û

ŵ









∼ N



















0

0

0









,











Λ−1
y

0

0

0 0 Λ−1
η











+











Σv 0 0

0

0
Σuw





















, (11)
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where

Λy = λyB
T WyB,

Λη = ληK
T K,

Σv = λ−1
v Ipδ

⊗ R(x, x; ρv),

and the covariance matrix Σuw, which links the simulator response u(θ) at the experimental settings,
(xi, θ), i = 1, . . . , n, to the simulator response w at the design inputs, (x∗

j , θ
∗
j ), j = 1, . . . , m, is given

by
0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

λ
−1

w1
R((x, θ), (x, θ); ρw1) 0 0 λ

−1

w1
R((x, θ), (x∗, θ∗); ρw1) 0 0

0
. . . 0 0

. . . 0

0 0 λ−1

wpη
R((x, θ), (x, θ); ρwpη

) 0 0 λ−1

wpη
R((x, θ), (x∗, θ∗); ρwpη

)

λ
−1

w1
R((x∗, θ∗), (x, θ); ρw1) 0 0 λ

−1

w1
R((x∗, θ∗), (x∗, θ∗); ρw1) 0 0

0
. . . 0 0

. . . 0

0 0 λ−1

wpη
R((x∗, θ∗), (x, θ); ρwpη

) 0 0 λ−1

wpη
R((x∗, θ∗), (x∗, θ∗); ρwpη

)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Above, R(x, x; ρv) denotes the n×n correlation matrix for the discrepancy process obtained by ap-

plying (9) to the input conditions x1, . . . , xn corresponding to the n experiments; R((x∗, θ∗), (x, θ); ρwi)

denotes the m × n correlation submatrix for the GP modeling the simulator output obtained by

applying (3) to the m simulator input settings (x∗
1, θ

∗
1), . . . , (x

∗
m, θ∗m) crossed with the n experi-

mental settings (x1, θ), . . . , (xn, θ), with θ denoting the true, but unknown, calibration setting to

be estimated. The remaining components of Σuw are constructed analogously. Note that only

the off-diagonal blocks of Σuw depend on the unknown calibration parameters contained in θ.

The equivalency of (6) reduces the (ny + mnη)-variate normal distribution of (yT , ηT )T to the

(n(pη + pδ) + mpη)-variate normal distribution of (v̂T , ûT , ŵT )T given in (11)–particularly efficient

when nη and ny are large.

2.5.1 Posterior distribution

If we take ẑ to denote the reduced data (v̂T , ûT , ŵT )T , and Σẑ to be the covariance matrix given

in (11), the posterior distribution has the form

π(λη, λw, ρw, λy, λv, ρv, θ|y, η) ∝ (12)

|Σẑ|−
1
2 exp

{

− 1

2
ẑT Σ−1

ẑ ẑ
}

× λ
a′

η−1
η e−b′ηλη ×

pη
∏

i=1

λaw−1
wi e−bwλwi ×

pη
∏

i=1

px+pθ
∏

k=1

ρ
aρw−1
wik (1 − ρwik)

bρw−1 × λ
a′

y−1
y e−b′yλy × λav−1

v e−bvλv ×

px
∏

k=1

ρ
aρv−1
vk (1 − ρvk)

bρv−1 × I[θ ∈ C],
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where C denotes the constraint region for θ, which is typically a pθ-dimensional rectangle. In other

applications C can also incorporate constraints between the components of θ.

Realizations from the posterior distribution are produced using standard, single site MCMC.

Metropolis updates (Metropolis et al., 1953) are used for the components of ρw, ρv and θ with

a uniform proposal distribution centered at the current value of the parameter. The precision

parameters λη, λw, λy and λv are sampled using Hastings (1970) updates. Here the proposals are

uniform draws, centered at the current parameter values, with a width that is proportional to the

current parameter value. Note that we bound the proposal width by not letting it get below 0.5.

In a given application the candidate proposal width can be tuned for optimal performance.

However, because of the way the data have been standardized, we have found that a width of 0.2

for the Metropolis updates, and a width of 0.3 times the current parameter value (or 0.5, whichever

is larger) for the Hastings updates, works quite well over a fairly wide range of applications. This

is an important consideration as we move to develop general software to carry out such analyses.

The resulting posterior distribution estimate for (θ1, θ2) is shown in Fig. 10 on the standardized

C = [0, 1]2 scale. This covers the true values of θ = (0.5, 0.5) from which the synthetic data were

generated.

Figure 10: Estimated posterior distribution of the calibration parameters (θ1, θ2), which correspond

to the detonation energy of the explosive and the yield stress of steel respectively. The true values

from which the data were generated are θ = (0.5, 0.5).
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2.5.2 Posterior predictions

As with the pure emulator analysis described in Sec. 2.2, predictions of system behavior can be

produced at unobserved input settings x⋆. Since

ŷ(x⋆) = η(x⋆, θ) + δ(x⋆)

= Kw(x⋆, θ) + Dv(x⋆),

we need only produce draws w(x⋆, θ) and v(x⋆) given a posterior draw of the parameter vector

(λη, λw, ρw, λy, λv, ρv, θ). Draws of w(x⋆, θ) and v(x⋆) can then be used to give posterior realizations

for the calibrated simulator η(x⋆, θ), the discrepancy term δ(x⋆), and predictions ŷ(x⋆).

These predictions can be produced from standard GP theory. Conditional on the parameter

vector (λη, λw, ρw, λy, λv, ρv, θ), the reduced data ẑ, along with the predictions w(x⋆, θ) and v(x⋆),

have the joint distribution









ẑ

v(x⋆)

w(x⋆, θ)









∼ N

















0

0

0









,









Σẑ Σẑv⋆ Σẑw⋆

Σv⋆ẑ λvIpδ
0

Σw⋆ẑ 0 diag(λw)

















,

where Σẑv⋆ has nonzero elements due to the correlation between v̂ and v(x⋆), and Σẑw⋆ has nonzero

elements due to the correlation between (û, ŵ) and w(x⋆, θ). The exact construction of the matrices

Σẑv⋆ and Σẑw⋆ is analogous to the construction of Σv and Σuw in Sec. 2.5. Generating simultaneous

draws of v(x⋆) and w(x⋆, θ) is then straightforward using conditional normal rules as is detailed in

Sec. 2.2.

The posterior mean estimates for η(x, θ), δ(x) and their sum, ŷ(x), are shown in Fig. 11

for the three input conditions x corresponding to the amount of HE used in each of the three

experiments. Also shown are the experimental data records from each of the experiments. Note

that the discrepancy term picks up a consistent signal across experiments that varies with time and

angle, even though the simulator cannot give variation by angle φ.

Figure 12 shows the prediction uncertainty for the inner radius at the photograph times of the

three experiments. The figure gives pointwise 90% credible intervals for the inner radius. Here, the

prediction for each experiment uses only the data from the other two experiments, making these

holdout predictions.
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Figure 11: Posterior mean estimates for η(x, θ), δ(x), and their sum, ŷ(x), at the three input

conditions corresponding to each of the three experiments. The experimental observations are

given by the dots in the figures showing the posterior means for η(x, θ) and ŷ(x).
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Figure 12: Holdout prediction uncertainty for the inner radius at the photograph times for each

experiment. The lines show pointwise 90% credible intervals; the experimental data is given by the

dots.
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3 Application to HE cylinder experiments

3.1 Experimental setup

Often, analysis of experiments requires that the simulator accurately models a number of different

physical phenomena. This is the case with the previous implosion application, which involves im-

parting energy deposited by an explosive, as well as modeling the deformation of the steel cylinder.

The added difficulty of modeling integrated physics effects makes it beneficial to consider additional

experiments that better isolate the physical process of interest. The HE cylinder experiment, con-

sidered in this section, more cleanly isolates the effects of HE detonation.
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Tube breaks, detonation
products escape

Expanding tube wall

Air shock

Detonation wave

 Slit plane

Camera’s view

Copper tube

Pin Wires

 Shot #15-2546
Streak record from

Light  Source

(Argon-bomb flash)

Figure 13: HE cylinder experiment. The HE cylinder is initiated with plane detonation wave, which

begins to expand the surrounding copper cylinder as the detonation progresses. This detonation

wave moves down the cylinder. Pin wires detect the arrival time of the detonation along the wave,

while the streak camera captures the expansion of the detonation wave at a single location on the

cylinder.
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The cylinder test has become a standard experiment performed on various types of HE at LANL.

The standard version of this experiment–depicted in Fig. 13–consists of a thin-walled cylinder of

copper surrounding a solid cylinder of the HE of interest. One end of the HE cylinder is initiated

with a plane-wave lens; the detonation proceeds down the cylinder of HE, expanding the copper

tube via work done by the rapidly increasing pressure from the HE. As the detonation progresses,

the copper cylinder eventually fails.

Diagnostics on this experiment generally include a streak camera to record the expansion of the

cylinder, and pin wires at regular intervals along the length of the copper cylinder. Each pin wire

shorts as the detonation wave reaches its location, sending a signal that indicates time of arrival of

the detonation wave. From these arrival times, the detonation velocity of the experiment can be

determined with relatively high accuracy. Note the use of copper in this experiment is necessary

to contain the HE as it detonates. Since copper is a well-controlled and understood material, its

presence will not greatly affect our ability to simulate the experiment.

Details of the experiments are as follows: HE diameter is 1 inch; copper thickness is 0.1 inch;

cylinder length is 30 cm; slit location is 19 cm down from where the cylinder is detonated–by this

distance, the detonation wave is essentially in steady state. Prior to the experiment, the initial

density of the HE cylinder is measured.

3.2 Simulations

Simulations of HE detonation typically involve two major components–the burn, in which the HE

rapidly changes phase, from solid to gas, and the equation of state (EOS) for the resulting gas

products, which dictates how this gas works on the materials it is pushing against. The detonation

velocity, determined by the pin wires, is used to prescribe the burn component of the simulation,

moving the planar detonation wave down the cylinder. This empirical approach for modeling the

burn accurately captures the detonation for this type of experiment. It is the parameters controlling

the EOS of the gaseous HE products that are of interest here.

The EOS describes the state of thermodynamic equilibrium for a fluid (the HE gas products,

in this case) at each point in space and time in terms of pressure, internal energy, density, entropy,

and temperature. Thermodynamic considerations allow the EOS to be described by only two of

these parameters. In this case, the EOS is determined by a system of equations, giving pressure as

a function of density and internal energy.

The HE EOS function is controlled by an 8-dimensional parameter vector θ. The first component
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θ1 modifies the energy imparted by the detonation; the second modifies the Gruneisen gamma

parameter. The remaining six parameters modify the isentrope lines of the EOS function (pressure-

density contours corresponding to constant entropy).

Thus we have 9 inputs of interest to the simulation model. The first, x1, is the initial density

of the HE sample, which is measured prior to the experiment. The remaining pθ = 8 parameters

describe the HE EOS. Prior ranges were determined for each of these input settings. They have

been standardized so that the nominal setting is 0.5, the minimum is 0, and the maximum is 1. A

128 run OA-based LH design was constructed over this px + pθ = 9-dimensional input space giving

the simulation output shown in Fig. 14. Of the 128 simulation runs, all but two of them ran to

completion. Hence the analysis will be based on the 126 runs that completed.
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Figure 14: 126 simulated displacement curves for the HE cylinder experiment. Left: simulated

displacement of the cylinder where time = 0 corresponds to the arrival of the detonation wave at

the camera slit. Right: the residual displacement of the cylinder after subtracting out the pointwise

mean of the simulations.

3.3 Experimental observations

Figure 15 shows the experimental data derived from the streak camera from four different HE

cylinder experiments. The cylinder expansion is recorded as time-displacement pairs for both the

left- and right-hand sides of the cylinder as seen by the streak record. The measured density (in

standardized units) for each of the HE cylinders is 0.15, 0.15, 0.33, 0.56 for Experiments 1–4,

respectively.

The data errors primarily come from three different sources: determination of the zero dis-
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Figure 15: Observed data from 4 HE cylinder experiments. For each streak camera image, points

corresponding to displacement are recorded over time. Separate displacements are recorded for

the left and right side of the cylinder. Here, the mean of the simulated displacements has been

subtracted from the data. Note that Experiment 3 is missing the displacement from the right-

hand cylinder expansion. The light lines in the background of each figure show the 126 simulated

displacements.

placement level, causing a random shift in the entire data trace; replicate variation due to subtle

differences in materials used in the various experiments–modeled as time correlated Gaussian er-

rors; and jitter due to the resolution of the film. After substantial discussion with subject matter

experts, we decided to model the precision Wi for Experiment i as

Wi =
(

σ2
011T + σ2

aRy + σ2
j I

)−1
,

where the variances σ2
0, σ2

a, and σ2
j and correlation matrix Ri have been elicited from experts. Note

that the model allows for a parameter λy to scale the complete data precision matrix Wy. Because

of the ringing effects in the displacement observations at early times, we take only the data for
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which 2.5µs ≤ t ≤ 12.0µs.

3.4 Analysis and results

We model the simulation output using a principal component basis (Fig. 16) derived from the

126 simulations over 0µs ≤ t ≤ 12µs. Eight basis functions (also shown in Fig. 16) are used to
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1

Principal Components, K=[k
1
,k

2
]

k
2
; .7% of variation

k
1
; 99.2% of variation

time (µs)
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0.8

Discrepancy basis

time (µs)

Figure 16: Principal component basis (left) and the kernel-based discrepancy basis (right). The

discrepancy uses independent copies of the kernel basis shown in the right-hand plot for the left

and right streaks. Here pη = 2 and pv = 2 · 8.

determine the discrepancy δ(x) as a function of time for each side of the cylinder expansion seen

in the streak record.

The fitted model for the simulation output allows us to explore the sensitivity of the simulated

expansion to the 9 input parameters. Figure 17 shows the posterior mean of the simulator output

η(x1, θ) as one of the input parameters is varied while the remaining parameters are held at their

nominal value of 0.5. From the figure it is apparent that x1–HE density, θ1–detonation energy, and

θ3–the first isentrope parameter, have the most effect on the simulated expansion.

The MCMC output resulting from sampling the posterior distribution of the full model (12)

allows us to construct posterior realizations for the calibration parameters θ, the discrepancy process

δ(x), and predictions of the cylinder expansion at general input condition x1. The estimated 2-

dimensional marginal distributions for π(θ|y) are shown in Fig. 18. The lines show estimated 90%

HPD regions for each margin. Recall the prior is uniform for each component of θ.

For this application, the posterior distribution for the discrepancy process is tightly centered

at 0 for both the left- and right-hand expansion. Hence the experimental error term ǫ adequately

accounts for the simulations and experimental data.
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Figure 17: Estimated sensitivites of the simulator output from varying a single input while keeping

the remaining eight inputs at their nominal value.

Posterior predictions for the cylinder expansion are given in Fig. 19 at input conditions x1

corresponding to the four experiments used in this analysis. Also shown are the experimental

observations. Note that experiments 1 and 2 are essentially replicates. Thus they inform about the

magnitude of the experiment to experiment variation which is captured in the precision parameter

λy.

4 Discussion

The modeling approach described in this paper has proven quite useful in a number of applications

at LANL. Application areas include shock physics, material science, engineering, cosmology, and

particle physics.

The success of this approach depends, in large part, on whether or not the simulator can be
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Figure 18: Two-dimensional marginals for the posterior distribution of the eight EOS parameters.

The solid line gives the estimated 90% HPD region. The plotting regions correspond to the prior

range of [0, 1] for each standardized parameter.

efficiently represented with the GP model on the basis weights wi(x, θ), i = 1, . . . , pη. This is

generally the case for highly forced systems–such as an implosion–which are dominated by a small

number of modes of action. This is apparent in the principal component decomposition, which

partitions nearly all of the variance in the first few components. These systems also tend to exhibit

smooth dependence on the input settings. In contrast, more chaotic systems seem to be far less

amenable to a low-dimensional description such as the PC-basis representations used here. Also,

system sensitivity to even small input perturbations can look almost random, making it difficult

to construct a statistical model to predict at untried input settings. We therefore expect that an

alternative approach is required for representing the simulator of a less forced, more chaotic system.

Finally, we note that the basic framework described here does lead to issues that require careful

consideration. The first is the interplay between the discrepancy term δ(x) and the calibration
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Figure 19: Posterior distribution for the cylinder expansion at the input conditions corresponding

to the four experiments. The solid lines show pointwise 90% credible intervals for η(x1, θ); the

dashed lines give pointwise 90% credible intervals for a new measurement y∗(x1). The circles show

the observed streaks from the experiments.

parameters θ; this is noted in the discussion of Kennedy and O’Hagan (2001), as well as in a

number of other articles (Higdon et al., 2004, Bayarri et al., 2005, and Loeppky et al., 2005). The

basic point here is that if there is a substantial discrepancy, then its form will affect the posterior

distribution of the calibration parameters. The second is the issue of extrapolating outside the

range of experimental data. The quality of such extrapolative predictions depends largely on the

trust one has for the discrepancy term δ(x)–is what’s learned about the discrepancy term at tried

experimental conditions x1, . . . , xn applicable to a new, possibly far away, condition x∗? Third,

and last, we note that applications that involve a number of related simulation models require

additional modeling considerations to account for the relationship between the various simulation

models. See Kennedy and O’Hagan (2000) and Goldstein and Rougier (2005) for examples.
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